System Safety Process Steps The System Safety discipline is defined as the application of special technical and managerial skills to the systematic, *forward-looking* identification and control of hazards throughout the life cycle of a project, program, or activity. The primary objective of System Safety is accident prevention. Accident prevention can be achieved by proactively identifying, assessing, and eliminating or controlling safety-related hazards, to acceptable levels. A hazard is a condition, event, or circumstance that could lead to or contribute to an unplanned or undesired event. Risk is an expression of the impact of an undesired event in terms of event severity and event likelihood. Throughout this process, hazards are identified, risks analyzed, assessed, prioritized, and results documented for decision-making. The continuous loop process provides for validation of decisions and evaluation for desired results and/or the need for further action. The System Safety process steps are depicted graphically in the following figure. It is a formal and flexible process that generally follows the steps in the FAA's *Safety Risk Management Order*, 8040.4. A systematic approach to process improvement requires proactively searching for opportunities to improve the process at every step, not simply identifying deficiencies after an undesired event. ## System Safety Process #### 1. Define Objectives The first step in the System Safety process is to define the objectives of the system under review. These objectives are typically documented in business plans and operating specifications #### 2. System Description A description of the interactions among people, procedures, tools, materials, equipment, facilities, software, and the environment. This also includes descriptions of data available #### 3. Hazard Identification: Identify Hazards & Consequences In this step, potential hazards may be identified from a number of internal and external sources. Generally, hazards are initially listed on a Preliminary Hazard List (PHL) then grouped by functional equivalence for analysis. Prior to risk analysis you must also include the consequence (undesired event) resulting from the hazard. This should be in the form of a written statement that includes the hazard that is causing concern, followed by its potential consequences. This provides an intermediate product that expresses the condition and the consequences that will be used during risk analysis. #### 4. Risk Analysis: Analyze Hazards and Identify Risks Risk analysis is the process whereby hazards are characterized for their likelihood and severity. Risk analysis looks at hazards to determine **what** can happen **when**. This can be either a qualitative or quantitative analysis. The inability to quantify and/or the lack of historical data on a particular hazard does not exclude the hazard from the need for analysis. Some type of a Risk Assessment Matrix is normally used to determine the level of risk (see an example contained in Attachment 1). #### 5. Risk Assessment: Consolidate & Prioritize Risks Risk Assessment is generally defined as the process of combining the impacts of risk elements discovered in risk analysis and comparing them against some acceptability criteria. Risk Assessment can include the consolidation of risks into risk sets that can be jointly mitigated. The results of this comparison are used in decision making. #### 6. Decision Making: Develop Action Plans This step begins with the receipt of a prioritized risk list. Review the list to determine how to address each risk, beginning with the highest prioritized risk. The four options that may be chosen for a risk are transfer, eliminate, accept, or mitigate (T.E.A.M). All decisions and related information used to make the decisions are documented. #### 7. Validation and Control: Evaluate Results of Action Plan for Further Action Validation and control begins with (1) the results of scheduled analyses on the effectiveness of actions taken (this will include identification of data to be collected and identification of triggering events if possible; then developing a plan to review the data collected) and (2) the current status of each prioritized risk. If the status of a risk should change or the mitigating action does not produce the intended effect a determination must be made as to what modifications to the system/process may be necessary. # Attachment 1 Example Risk Assessment Matrix | RISK ASSESSMENT MATRIX | | | | | | |------------------------|--------------|----------|----------|------------|--| | Severity | | | | | | | Likelihood | Catastrophic | Critical | Marginal | Negligible | | | Frequent | 11 | | | | | | Probable | H19" | 1015 | | | | | Occasional | | erlou | 44 | | | | Remote | • | | اللأكم | aW . | | | Improbable | | | | | | | Severity Scale Definitions | | | | |----------------------------|--|--|--| | Catastrophic | Results in fatalities and/or loss of the system. | | | | Critical | Severe injury and/or major system damage. | | | | Marginal | Minor injury and/or minor system damage. | | | | Negligible | Less than minor injury and/or less than minor system damage. | | | | Likelihood Scale Definitions | | | | |------------------------------|------------|---|--| | Frequent | Individual | Likely to occur often. | | | | Fleet | Continuously experienced. | | | Probable | Individual | Will occur several times. | | | | Fleet | Will occur often. | | | Occasional | Individual | Likely to occur some time. | | | | Fleet | Will occur several times. | | | Remote | Individual | Unlikely to occur, but possible. | | | | Fleet | Unlikely but can reasonably be expected to occur. | | | Improbable | Individual | So unlikely, it can be assumed it will not occur. | | | | Fleet | Unlikely to occur, but possible. | |